Critics, on the other hand, have argued all along that both twin studies and family studies are unable to disentangle the potential roles of genes and environment. They have pointed out for decades that the validity of equal environment assumption (EEA) of the twin method is not supported by the evidence, and that the much more similar environments experienced by reared-together monozygotic (MZ) versus reared-together dizygotic (DZ) twin pairs confound the results of the twin method. Therefore, both family studies and twin studies prove nothing about genetics and their results can be completely explained by non-genetic factors. Most behavioral geneticists agree with this assessment as it relates to family studies, but continue to maintain that twin studies provide conclusive evidence that genes play an important role. Critics have also pointed to the massive methodological problems and untenable assumptions found in psychological and psychiatric adoption studies, as well as the major problems and environmental confounds in studies of purportedly reared-apart twins
And:
In study after study, applying GWAs to every common (non-infectious) physical disease and mental disorder, the results have been remarkably consistent: only genes with very minor effects have been uncovered (summarised in Manolio et al 2009; Dermitzakis and Clark 2009). In other words, the genetic variation confidently expected by medical geneticists to explain common diseases, cannot be found.
There are, nevertheless, certain exceptions to this blanket statement. One group are the single gene, mostly rare, genetic disorders whose discovery predated GWA studies2. These include cystic fibrosis, sickle cell anaemia and Huntington’s disease. … With these exceptions duly noted, however, we can reiterate that according to the best available data, genetic predispositions (i.e. causes) have a negligible role in heart disease, cancer, stroke, autoimmune diseases, obesity, autism, Parkinson’s disease, depression, schizophrenia and many other common mental and physical illnesses that are the major killers in Western countries.
…
This dearth of disease-causing genes is without question a scientific discovery of tremendous significance. It is comparable in stature to the discovery of vaccination, of antibiotics, or of the nature of infectious diseases, because it tells us that most disease, most of the time, is essentially environmental in origin.
Firstly, in my view, common diseases can not have its origin in genetic problems. And secondly, who says that common diseases (chronic, with presumably gradual onset and/or gradual build-up, like e.g. type 2 diabetes) can't have a infectious origin? I think nutrition is far more likley to be the culprit, but hey.
In a rare public sign of the struggle to come to terms with this genetically impoverished world-view, the authors of a brief review in Science magazine, Andrew Clark of Cornell University and Emmanouil Dermitzakis of the University of Geneva Medical School, Switzerland have been alone in stating the case even partly straightforwardly. According to them, the GWA studies tell us that “the magnitude of genetic effects is uniformly very small” and therefore “common variants provide little help in predicting risk” (Dermitzakis and Clark 2009). Consequently, the likelihood that personalised genomics will ever predict the occurrence of common diseases is “bleak”. This aim, they believe, will have to be abandoned altogether.
The first conclusion to be drawn from these quotes is that such directness implies that if the GWA findings are not finding their way to the front page the reason is not ambiguity in the results themselves. From a scientific perspective the GWA results, though negative, are robust and clear.
Most human geneticists view the GWA results somewhat differently, however. An invited workshop, convened by Collins and others, discussed the then-accumulating results in February 2009. The most visible outcome of this workshop was a lengthy review published in Nature and titled: “Finding the Missing Heritability of Complex Diseases.” (Manolio et al. 2009).
For a review paper that does not lay out any new concepts or directions, 27 senior scientists as coauthors might be considered overkill. “Finding the Missing Heritability”, however, should be understood not so much as a scientific contribution but as an effort to conceal the gaping hole in the science of medical genetics.
In their Science article, which was published almost simultaneously, Dermitzakis and Clark paused only briefly to consider whether so many genes could have been overlooked. Apparently, they thought it an unlikely possibility. Manolio et al., however, frame this as the central issue. According to them, since heritability measurements suggest that genes for disease must exist, they must be hiding under some as-yet-unturned genetic rock. They list several possible hiding places: there may be very many genes with exceedingly small effects; genes for disease may be highly represented by rare variants with large effects; disease genes may have complex genetic architectures; or they may exist as gene Copy Number Variants (CNVs). Since Manolio et al. presented their list, the scientific literature has seen further suggestions for where disease genes might be hiding. These include in mitochondrial DNA, epigenetics and in statistical anomalies (e.g. Eichler et al. 2010; Petronis 2010).
It is sad to see scientists working in the field genetics have so little grasp of evolution that they fail to see the evolutionary interdependence of genes and environment...
No comments:
Post a Comment
Comments are most welcome! But please:
- No SPAM whatsoever, no supplements, no pharmaceuticals, no herbs or any other advertisements
- Absolutely no quack-doctors pushing their quack-BS websites (and if you are a quack, I will call you out)
- Be critical if you want to, but try to be coherent
Comments are moderated, because I am tired of Gerwyn-V99-The-Idiot and his moronic sockpuppets, and tired of the story of the two dogs, but I will try to publish everything else.
If you are not Gerwyn (and want to tell me something other than the story of the two dogs), then relax and write something! :-)